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Chapter 1

The Rectilinear
Propagation of Light

1.1 A Demonstration of Shadows

We have a bright lamp, with an object that casts a shadow on the screen. A
representation of the setup from class is drawn in Figure 1.1.

The lamp and the object can both be moved. How can they be moved in
order to make the shadow grow larger? How can they be moved in order to
make the shadow grow smaller?” Why is the edge of the shadow indistinct, and
not sharp?

screen

obstruction

Figure 1.1: Demonstration of a shadow being cast by an object in front of a
lamp.
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1.2 Huygens’ Principle

To understand how shadows are made, we must first understand how light prop-
agates, 7.e., moves through empty space when there are no objects to obstruct
it. We begin by discussing wave fronts.

1.2.1 Wave fronts

Let us draw a wave front propagating from a light bulb in Figure 1.2. Every point
on this wave front is the source of an infinitesimal wavelet, which propagates
outwards from its source on the wave front. When all of these little wavelets
are added together, they form a new wave front. This continues so that all of
the wave fronts form a series of embedded arcs around the light bulb.

wavelets

<«—Wavefronts

Figure 1.2: Wave fronts propagating from a light bulb.
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1.2.2 The Law of Rectilinear Propagation

Follow a path from the light bulb through each wave front, connecting similar
wavelets in each wave front, and we produce straight lines, which we can illus-
trate in Figure 1.3. These straight lines are called light rays. The fact that
light will follow a straight path, in the absence of anything getting in the way, is
called the law of rectilinear propagation (meaning that light moves in straight
paths).

<«—Wwavefronts

Figure 1.3: The formation of light rays.

Light rays have a couple of geometric properties. The first and most obvious
is that they are orthogonal to the wave fronts and therefore indicate the direc-
tions in which the wave front is propagating. In the case of the light bulb, the
light rays appear radial and point away from the light bulb in all directions.

The second and more subtle property is that, being straight, then in the
Cartesian coordinate system in which the light bulb exists the light rays follow
the path of shortest time between two points. We’ll get back to this property
in Chapter 2.
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1.2.3 Physical Evidence

How do we know that light rays offer a true description of how light actually
moves? We can observe the rectilinear propagation of light in nature, as illus-
trated in Figure 1.4. Light from the Sun propagates through a forest, blocked by
branches and trunks, forming narrow bands that always follow straight paths.
This image illustrates that the law of rectilinear propagation is an apt descrip-
tion of how light moves.

Figure 1.4: Sunlight shining through a forest. Image credit: Niki Pike,
https://nikipike.com/wp-content /uploads/2016/02/IMG_7708.jpg

1.2.4 Light Rays and the Anatomy of a Shadow

Now that we have an idea for how light propagates, we can use light rays to
draw shadows cast by an object and then use those light rays to relate the
object and light source distances to the size of the shadow. Figure 1.5 on the
next page sketches the shadow cast in our demonstration (Fig. 1.1) in detail.
The variables we will use are:

e S: The height of the light source
e O: The height of the object
e UU: The height of the umbra

e P: The height of the penumbra (partial shadow)
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e z: The distance from light source to object

e [: The distance from light source to screen

Penumbra

A
A\

L

A
v

Figure 1.5: Relating source and object distances to the size and appearance of
the shadow cast.

We will make measurements from the center line, so that S/2 represents the
height of the light source above the center line, and so forth.

The technique we are going to employ relies on finding similar triangles,
i.e. those triangles that share the same angles, even if their sides are different
lengths. For example, the height of the object above the light source appears
to be proportional to the height of the umbra above the light source. We can
therefore equate the ratio of the vertical height and horizontal length for each
of those triangles, since that ratio equals the tangent of the apex angle of the
two similar triangles:

0/2-5/2 _U/2-85/2

1.1
- T (1.1)
Carrying down the 2, this becomes
o-S U-S
== 1.2
2z 2L (12)

This equation can be simplified using cross multiplication and removing a
common factor from both sides:

(O —S)L=(U— 8 (1.3)

Since we wish to discover a relationship between shadow size and object/light
source distances, we should now solve for U in the above equation.
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L—-SL
U:w (1.4)

We will rearrange this slightly so that L, x, and L — z all appear separately:

OL - S(L—x)
x

U= (1.5)

so that now we can use this equation to show how each of the distances are
responsible for the size of the umbra. More than any other single variable, x
decides the size of the umbra. U and x are inversely proportional, so that if the
object is very close to the light source, then the umbra is very large. There is a
second important relationship that is easy to observe: as x approaches L, then
U approaches O.

Now let us take a look at the size of the penumbra, which is oftentimes
harder to measure than the umbra because it is not as dark. We will use the
light ray starting from the bottom of the source and leading all the way to the
top of the penumbra. This can be difficult to see, so take time discerning the
following similar triangles equation:

O—-(0-5)/2 P/2+S5/2
T N L
We will carry down the two as before, plus check our algebra to ensure that

(1.6)

O+S P+S
2r 2L
Then we cross-multiply and remove the common factor from both sides to
get

(1.7)

(O+8S)L=(P+9)x (1.8)
Solving for P, the size of the penumbra, we find
P:OL+SL—Sx (1.9)
x
which can be re-written as
p_ OL+S(L~-2) (1.10)
x

That looks pretty similar to our equation for the umbra, except that the two
terms in the numerator are added instead of subtracted. In essence, however,
what this shows is that the size of the penumbra has the same basic dependencies
as does the size of the umbra: It becomes larger when x is smaller, and in the
limiting case of L and x being similar then P becomes the size of the object
itself.

Of course, what we actually see of the penumbra is an annulus around the
umbra. How thick that annulus appears can be shown by subtracting our equa-
tion for the umbra from our equation for the penumbra.
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OL+S(L—-—z) OL-S(L—x) L—=x

P-U-= =25

. ; (1.11)

Then, the thickness of the penumbral annulus can be written by dividing both
sides of the above equation by 2:

P-U L—z
5 = S - (1.12)
The penumbra will appear large when the source is physically large. The
size of the penumbra can be further enhanced if the distance from object to
screen is large compared to the distance between the object and light source.
We will explore these relationships more in this chapter’s laboratory: Using
Shadows to Measure the Sizes of the Farth, Sun, and Moon.




